
AD-A268 099USAISEC-.
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

-ELFCTE
AG 12 1993

A
Software Development Information

Supported by Typical
CASE Tools

Tniv do,:ure!? h.a b--- approved 0 .for public rele4s- nd sale; its
distribution s l n 1L'nit s

ASQB-GI-91-014

AIRMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

9 2)90 ,.

AdNCLAIMH NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

VREPORT DOCUMENTATION PAGE OMB N n7Q$

la REPORT SECURITY CLASSIFICA1ION lb RESTRICTIVE MARKINGS

UNCLASSIFIED NONEI
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBTIMON ,AVAILABILITY OF RPPORT

N/A
2b DF'CL.ASSIFiCATION /DOLUNORADINO SCIIEnIf F.

VA VA

4 PERFORIMING, ORGANIZATION REPORT NIJMAFRkS) 5 MONITORING ORG;ANIZATION REPORT NUMISFR(S,

ASQB-GI-91U-0 14 6hOFCSN/A

6a NAME OF PERFORMING ORGAONIZATION ah Ol'CYMPOL 7
a NAME OF: MONITORING OR(;NNIZAION

Purdue University / SERC (i piai)N/ A
6c ADDRESS (City. State. and ZIP Code) 7h ADDRESS (Cit,. State, and Zip Code)

Department of Computer Science
West LaFayette. Indiana 47907 N/A

Ra NAME OF itNDiNG.'SPONSORIN(; 8b OFFICE SYMBOl. 9 PROCTUREMF-.T IS STIRt 5F1T IDEFNTIFICATION NUMBER
ORGANIZl ION ; f app!,cabic)

AIRMRICS ASQB - GI
sc 41)I.RFSS ýCA;. State. and ZIP C.de) I I (I IPO tNII.(l M R

I15 O'Keefe Bldg.. PROGRAIM P1(TASK IWORK I NT I

Geurgia Institute of Technology Hl FMENTr % NO NO. ACCFSSiON N

Atlanta. GA 30332-0800 o 2 7 SA DY 10 02-04-02
11 i~i I ln icue Securttv Ciassfta~ionc

Software Development Information Supported by Tvpical CASE Tools
(UNCLASSIFIED)

2 ili) AL 1`10RIORS'

Dunst-ore. Buster: 'Varnau. Stexe

13a TYPE OF: REPORT 131, lIME COVERED 114 DATE OF REPORt I'Yer, Month. Day PAGE COt NI

jiral report FROM [0 1991. \Marchi. 12 2 7

VP iT Ci 51 NIARY NOLAIJON

COSATI CODES ý* 'H - TER%'S Conril e ,n ýeyetre if ne~esiar an,' denliy Iv hl~vc nurnht,

RUD UOUP 1 H-~oup CASE 'Fools; Distributed Computing Design System: D('DS; Teawn~ork.
CiLI) GRUP I BGOVP Excelerator: EPOS; DesignAid. SA Tools. Software engineering environ-

_________________________ ment Systems:ý SEES: Ada Programming Support Environment; APSE

19 AlISIRACT (Conotinu on reverte if necessary and identiy by block numyber)

The work described in this report %~as accomplished as part of the Distrihiited Computing Desigrl Svystem
(DCD[S) evaluation project, AIRN¶ICS Report ASQB-Gol-91I-0094. -Evaluation of DCDS for Meeting the Data
Collection Requirements for Sofi~are Specification. Development, and Suppori'. The DCDS evaluation is out-
lined in the succeeding paragraph. This report augments the DCDS report by identifying the data Collection
requirements for a fully flexible CASE environment.

The [)CDS e' tiainechrw-al rep(nr consists of five separate hut related reports which evaluate the Di-stnb-
uteJ Conipuong Design System MlCDS). DCDS was developed by TRW as a Software development environ-
roera for r-il -time, distributed systemis The principal investigator evaluated DCDS in terms of: a) its data col-
lectioin reclu:rteolent,. h) its M ltmare development information comrpleteness, c) its usability, d) how it compares,
to) live ciitnmnerciwll'. asailable CAM-. tools, and e) its suitabilitV as an Ada Programming Support Environment
(APSE)

.1 ,lot1 A. tl F. 'I01110.1 IIAI "1 2: AIISI ROT Si1 CIRII (L-V0SSIiC\IiON

'..*' Or IN.iIiirmn [] .. i*'E'] I'll"rS51(19 \CLASSIVFl[D

'.s 0')I !I.tIiII'iiI'IS 22h 11ii FIIIONE i A',d rea dt) 22, 01)1 It U SV\411t

Howard C ''utch- lhgles (.404) S94-.31 10 E ASQB-GI_
DD FOR IO 1473, -4 MAP SIR9 e~ft-n may be uqed until *xiiuste, SFI-VRITY (2IAS'tEICA rusP

Vi, lher -fdlnn are byeU NCL.ASSIF IED)

The research herein was performed for the Army Institute for Research in Management
Information, Communications, and Computer Sciences (AIRMICS), the RDTE organization
of the U.S. Army Information Systems Engineering Command (USAISEC). The sponsor for
the project was the Office of the Director of Information Systems for Command, Control,
Communications. and Computers (ODISC4). The principal investigator was Dr. H. Duns.
more of Purdue University.

This research report is not to be construed as an official Army position, unless so
designated by other authorized documents. Material included herein is approved for public
release, distribution unlimited, and is not protected by copyright laws. Your comments on
all aspects of the document are solicited.

For

I.- _

I L0

L 1L
THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

fIC QUALr7r~r.,,

Y-

Glenn E. Racine fohn R Mitchell
Chief Director
CISD AIRMICS

S. . . .

It

Software Development Information
Supported by Typical CASE Tools

S. Varnau
H. Dunsmore

Software Engineering Research Center (SERC)
Department of Computer Sciences

Purdue University, West Lafayette, IN 47907

SERC-TR-77-P
July, 1990

Technical Report 3.1 from the Research Project:
Evaluation of DCDS for Meeting the Data Collection

Requirements for Software Specification, Development, and Support

Abstract

In this study we consider that the information collected by a CASE tool is its
most important feature. In this work we are identifying data collection requirements for
a fully flexible CASE environment. We have compiled a preliminary list of
information needs for CASE tools and have compared this list to the information
collected in five existing products and desirable functionality as suggested by
Henderson and Cooprider [HEND881.

We include detailed definitions and discussion of the identified information
requirements. These requirements are divided into two categories. Product data
includes everything which describes the software product itsell. Process data includes
everything which reflects the activity involved in developing and supporting the
product. Product data is further subdivided into description, implementation,
verification, and maintenance categories. Process data is subdivided into
management, coordination, and quality control categories.

In our assessments we found that the representative CASE tools and Henderson
and Cooprider's report score very well in the Product Description categories.
Henderson and Cooprider's report contains functions that include most of the useful
information in the Product Implementation categories, but the representative CASE
tools do not score as well. The Product Verification and Product Maintenance
categories of information are supported very poorly by the representative CASE tools as

I ! II~/lllllll/lllll

-2-

well as by Henderson and Cooprider's report. The results in the Process Management
categories are variable. Process Coordination is covered quite adequately by Henderson
and Cooprider's functions. The representative CASE tools are adequate for only 2 of
the 5 Process Coordination categories. Process Quality Control is covered better by the
Henderson and Cooprider report than by the representative CASE tools. No tool is so
much as adequate in any of these categories.

Background

Discussion of Approach

Many CASE products are on the market with varying capabilities for supporting
the analysis, design, coding, and testing of software [GANEYOI. This indicates the
complexity of the issue at hand. How does one go about choosing (or constructing) a
software development environment complete enough to enhance the quality and
productivity of all phases of a particular software project, and flexible enough to handle
various types of projects? Indeed, a Department of Defense manual on the subject
[CRAW88] enumerates six different perspectives of programming support
environments:

1. A Collection of Tools

2. A Methodology Support System

3. An Information Management System

4. An Interactive System

5. A Knowledge-Based Expert System

6. A Stable Framework (for long-lived, evolutionary systems)

While conceding that many other perspectives surely exist, we add three more to
this list:

7. A Project Manager (aids in scheduling, budgeting, work assignments)

8. A Coordination System (enhances communication and coordination among
the software developers)

-3-

9. A Configuration System (controls versions and revisions of specifications,
design, and/or code) ,

Several methods for evaluating these products have been proposed (for example, A

[BARA89, DUNS87, HEND88]). The most obvious and frequently used method of
evaluating a software engineering environment is to study its functionality [BARA89,
HEND88]. The pertinent questions are "What does it do?" and "How well does it do
it?". This method covers all the above perspectives, and gives a good feel for our
primary goils of software quality and productivity benefits. This functionality
viewpoint, however, usually sacrifices the goal of flexibility. Implicitly, functionality
evaluation limits what technology is considered according to the list of requirements
adopted. To take future technology into consideration, such a list must be prophetic (at
best) or vague (at worst).

Since the software engineering field is constantly evolving, we are evaluating
CASE environments on the basis of the three goals: quality, productivity, and
flexibility. As a first requirement, we describe a narrower view of CASE environments,
which is inherently adaptable to differing and evolving needs.

A CASE environment should not be merely a workbench of independent tools,
but a set of integrated tools, using a consolidated collection of information [F1SC891.
A consolidation (i.e., centralization) of project data avoids redundancy, enhances
communication, and encou, ages consistency. Tools which use that information may be
added or replaced without affecting the core of the environment. As new technology
becomes available, it may be integrated.

It is becoming increasingly common for software environments to have an open
architecture. That is, there is a database of software project information that is
accessible by various environment tools and perhaps even for perusal (and even
modification) by the software developer. This is often achieved by custom translators
or interfaces. Industry standards arr currently being developed which will decrease
reliance on such ad hoc methods. Most software environments currently encode
software project information in a proprietary manner that is at least unintelligible and
even unaccessible. We do note that some of the products we have seen (including
Teamwork, Excelerator, and DesignAid included below) have varying degrees of semi-
open architecture, but none really have a completely open architecture. However, as the
industry progresses (as it seems to be doing) into open architecture systems, this will
help immensely toward the goal of flexibility. Functionality in such an environment
will be allowed to evolve and specialize. This suggests functionality will then be (if it
is not already) a secondary concern, and that is why we have developed a new
evaluation method.

4

-4-

From this new viewpoint, the most Important feature of a CASE
environment is the information It collects. In our work we are identifying data
collection requirements for a fully flexible CASE environment. This information
should be available to support all useful tools. This includes tools in common use and
those that are still theoretical. The information requirements presented here do not
depend on any particular representations, nor support any specific functions. Freedom
from explicit representations and functions allows for unbiased appraisal of competitive
environments.

To identify required data categories, we first compiled a preliminary list from
our experience and from the related literature. Most of the current literature takes a
functional viewpoint, so the data required for such functions had to be inferred. Next,
this list was compared to the information collected in five existing CASE products and
desirable functionality as suggested by Henderson and Cooprider JHEND88]. We used
five CASE products which have already been evaluated as part of the SEES project
[DUNS87]. This exercise was not intended to be an evaluation of these sources, but
rat'her a way to compare and contrast information collected, to identify further data
categories to be included in the list, and to assess the current state of practice in this
area.

The information on the CASE products was gathered from their documentation
and from limited use. By relying principally on how the product was intended to be *
used along with experimenting directly with the product, it was possible to determine
full sets of information collected and intended to be collected. In this task, we were not
interested in how well the information is used, or any other aspect of the product. A
drawback of this method is that we were very dependent on each product's
documentation. Some of the manuals were organized in a manner very conducive to
the task at hand; others decidedly wtere not. Other sources were also used whenever
available w.g., IGANE90)).

The products examined:

DesignAid version 3.55, one of the CASE 2000 tools for Computer Aided Software
Engineering available from Nastec Corporation, 24681 Northwestern Highway,
Southfield. Michigan 48075.

EPOS version 3.3.0 - Engineering and Project-management Oriented Support system,
available from Software Products & Services (SPS), 14 East 38th Street, New York,
New York 10016.

Excelerator/RTS version 1.8A, available from Index Technology Corp., One Main
Street, Cambridge, Mass 02142.

SA Tools version 1,00, available from Mentor Graphics, 8500 Southwest Creekside

S.

I I I I III 1 III I III • .. . i l I I I I i 1

-5-

Place, Beaverton, Oregon 97005.
5,

Teamwork version 3.0, available from Cadre Technologies, 222 Richmond Street,
Providence, Rhode Island 02903.

Also included in this investigation are the functions included in Henderson and
Cooprider's model of CASE technology IfHEND88I. Inferences were made to discern
what information is needed by those functions.

The most difficult type of information to capture and use are relationships
among other data items. Often relationships are inherent within data, data formats
(such as naming schemes), and heuristics in functional tools. The categories listed are
not necessarily mutually exclusive. Some information could legitimately be put into
more than one category.

Sometimes the scope of CASE products comes into question. Some
environments include support for system engineering (including hardware along with
software considerations) or project management. Since these aspects interact with
traditional software aspects in very important ways, we have taken a broad view of
software engineering.

Some information may be derivable from other collected information (e.g.,
metrics). This type of redundancy may very well be desirable to avoid undue
processing time. Some information may be derivable from external sources (e.g., e-
mail addresses). This type of redundancy may not be desirable to avoid unnecessary
use of storage and unnecessary development of new tools which duplicate existing ones.
External resources may be used through specific tools, or peripheral databases may be
useful. These types of issues are implementation-dependent. The point is that all of
the data items listed should be available to the CASE environment and to a complete
set of integrated tools.

Results

Below are the results of this phase of our work. We have identified information
collected and supported by representative CASE tools, the information which CASE
tools should collect based on [HFND88I, and (based on our experience and concurrent
work) information that should be part of a software development environment that
appears neither in the CASE tools nor in [HEND88].

-6-

We include detailed definitions and discussion of the identified information
requirements. These requirements are divided into two categories. Product data
includes everything which describes the software product itself. The typical results of a
software project are the requirements, specifications, design, implementation, code
metrics, test plans, etc. These materials comprise product data. Process data includes
everything which reflects the activity involved in developing and supporting the
product. This includes personnel, schedule, budget, etc.

Product data is further subdivided into description, implementation,
verification, and main iance categories. Description data consists of information
from the development phases commonly known as requiaements, specifications, and
design. This category of items serves as a plan for the product in the initial stages of a
project and as documentation in later stages. Note that description data should be
flexible enough to facilitate analysis and design of software, user documents, test plans,
and anything else needed. Implementation data consists of the deliverable components
ot a product. This includes codc and documentation for the end user. Verification data
L•Osists f co)rrectness information (typically testing information). Maintenance data
consists of information used in ensuring continuing usefulness of the project after initial
delivery.

Process data is subdivided into management, coordination, and quality *
control. Management data is used to control the project in terms of time and resources
used. Coordination data is used to help personnel communicate, thus increasing quality
and productivity. Quality control data is used to ensure and generally support
development of a correct, robust, safe product.

Another term which appears in this report is component. l'his is a general term
referring to an element of unspecified type or a group of elements. A component
usually refers to a part of the deliverable product (e.g., a code module or a document).
A component may also be part of a specification, design, etc. which refers to code or
documents.

Because of the great variety of software applications and the great variety of
perspectives on software, this list is necessarily somewhat general. The definitions and
di.,ct'ssion, however, provide pertinent subcategories. We have attempted to make this
list as concrete as possible. That is a difficult tdsk in the frontier irn of qoftv,,-r

engineering. While we were generally surprised by how many of these requirements
were met by at least one of the CASE tools considered, some in the areas of
maintenance, verification, coordination, and quality control were conspicuously absent.

I

-7-

PRODUCT
a

I

Product Description - Planning, development, documentation of all aspects of the
specific product. This is the major category that includes most of what we think of
when we think of what :he software does.

Functionality - What the product must do. This information should reflect the
requirements and specifications for the software. It can be in a formal, semi-
formal, or just a natural language format. It should include data input, data
output, product behavior, and other properties such as portability and security.

Interfaces - Interaction with external systems. This information should detail
what external systems are related to this software and the specific types of
interactions between the software and the external systcms.

Performance - Time and space that the prod ict uses. This is information that
describes the rcquircd memory and disk spac. for the software, along with
standard (or typical) execution times. The information may be quite
complicated if the software can be run in var.ouIs size configurations or if
execution times are varied dependent on input parameters.

Time Constraints - Real time limitations. This information outlines the time
performance constraints placed on the software. This includes any partial ortotal constraints placed on execution times.

Fault Tolerances - Error and failure handling. This information outlines the
acceptable responses of the software to "erroneous" input or to hardware
failure. Such errors and failures can include exceptions. faults, and resource
limitations. The information in this category can include the types of error
messages that are to appear, the kinds of errors that need not be detected, and
the kinds of recoveries expected from certain errors.

Data Flow - Movement of data in and out of components or stores. This
information describes the way in which data moves throughoýut the software. It
treats each component or store as a data-handling entity and describes that
information that moves in and out of that entity (including what the data is,
where it carec from, and where it is going).

Process Flow - Execution progression of components; sequential/parallel. This
information describes the software from a control flow viewpoint discussing the
flow of execution in both normal and abnormal situations. It also includes
sequential and parallel control flow information.

Resources - Resource usage of component; hardware considerations. Resources
are any entities external to the software. This information discusses resources
that either supply information to the software or receive information from the

S. i i iii i ll

-8-

software.

Structure - Static decomposition of components. This information conveys any
logical w'ouping of components for any reason; for example. grouping all
components that deal with the same database. There may be several static
decom'positions for the same software.

Entitv-Relatiorsrips - Relationships among components and externals. This
information if _iudes all of the typical E-R type information, e.g., for each entity
to what c`.,r entities is it related and in what manner.

Communication - Internal interfaces. Within the software how is
communication acco•nplished? What messages (in the object-oriented sense) are
communicated among the software's entities'?

Data - Often now being called the Data Dictionary, Data Encyclopedia, or
Data Repositfry. Data types, operations, constants, descriptions, stores,
rela'I(;nships. obtecis and cla.s.cs, processes, data flows, events, states, external
cntlics. Ma, be related to Project Index data (sec Process Coordination).

Requirements/Design - Relationships of goals and components. This
information tells which requirements arc related to (satisfied by) which elements
of the design. I

Design/Performance - Relationships of structure and performance. This
information tells which elements of the design are related to the various
performance constraints.

Description/lmplementation - Relationships of planned and implemented
components. This information links the requirements and specifications
(description of the software) with the actual implementation. That is, what
2Om ponents implement the requirements and specifications.

Design/Design - Relationships of alternative design representations. For
software WiLh more than one design proposed, how does each relate to the other?
What are 'he functionality and performance tradeoffs of each'?

Prototypes - What prototyping activity is planned? What specific aspects of the
software is to be protocyped? What will be done with the prototype? What
simulations will be conducted? What experiments will be tried to tcst
requirements, specifications, design. etc. This information, when complete,
should include the prototype goals (questions the prototype is designed to
answcr) and results (experimentally-determined answers), as well as the actual
pro•,typt product, simulation code. eic.

-22-

Product Implementation - This is the major category that includes the actual software
product (i.e., code, documents. etc.) as well as relevant information.

I
Actual Product - Code, Documcnts for end user. This is the software and
documentation produced. It consists of all new (and possibly re-used) cod,. and
the text and graphics necessary to produce documentation for the software. This
category is closely related to Configuration (see Process Coordination) which
keeps track of versions, revisions, etc.

Metrics - Product statistics. This inlorniatlon consists of any and all metrics
computed primarily from the software code (but possibly also from
documentation or other related representations of the product). It may include
(but is not limited to) such metrics ds lines-olf-code, siLc of data structure, and
complexity ,e.g.. v(G)). Such mnetrics may be used tor management, testing,
maintenance, performance, and even quality control purposes.

Library - Globally available, re-usable components. [his information contains
either actual rc-ii.,able components (or some sort of pointer to them) that will be
(or have been) cmploy.ed in the implementation of the software. Such a library
may have project. company, or even wider scope.

Templates - Oitaines and examples of common components. This information
contains sample components that conform to project, company. or wider
standards. Su,-h componcnts may simply be barc-boncs schema with little actual p

code or may be nearly complete components that rcquirc only minor
modification 'mcfore aIS in thc so tlý ;arc

Compile Parameters - [lov, -o•c is comnpikcd loi toieiig, debugging, and
(ultimately) for generating a pioduction versiion. This information includes
standard compilation ý%,:n;cier',, uv. s of te'cii• •g,: \,ts versions, searching
order for external components (such as re-used components), and speciai
parameters necessary for preparing the product version.

I

II I II I I I I 1 ~i i i

-10-

Product Verification - This is the major category that includes all information related
to testing the software (or any related activity that attempts to discover and correct
errors).

4"
Test Plan - Outline of testing process. This contains at least rudimentary
information about how the software is to be tested: what types of testing
procedures (perhaps formal methods) will be pursued, what tools will be used,
what types of test data, what will be done about errors that are discovered, etc.

Test Tools - Custom functions for debugging and testing. This is information
about the specific tools that will be (were) used for testing the software. These
can include tools that are part of the CASE tool, standalone external tools, or
specific test harnesses to be produced as part of the software development
process.

Test Suites - Test data and expected results. This information describes
specifically how test data is to be generated, how the software is to be
"exercised" with this data, and how the results are to be interpreted.

Status - This information (collected during the software testing process) outlines
which tests have detected the presence of an error and which tests have failed to

detect the presence of an error. Obviously, it is possible to tell from this

information which tests have been run (and either detected or failed to detect * *
errors) and which tests have not been run. For regression tests, this information
will tell which have been run on which versions and which revisions.

Errors Found - Errors discovered through testing; error reports. This
information outlines what errors have been discovered, which have been
corrected, which are planned to be corrected, and which (if any) are not planned

to be corrected.

Verllfcatkon/Description - This information links the requirements and
specifications (description of the softwarc) with the verification process. That is,

what has been (will be) done to assure that specific requirements and
specifications have been tested.

Analysis - Results of matching implementation against description (i.e.,
requirements and specifications). This information includes such items as types
of errors, time and space performance, error and failure handling, consistency,
and completeness.

I

-11- I ,

Product Maintenance - This is the major category that includes all information related
to the maintenance of the software, its upkeep, and support of the product in use (and
perhaps even in late development stages).

Maintenance History - This information includes all actual changes made and 4
known problems not yet corrected. It also includes information about various
software releases and versions and how they differ from each other.

Special Cases - How the product is being used. How the product is being
customized. This includes any release or version related information not
included in the Maintenance History sub-category above due to special
circumstances.

Complaints - Reported errors and their locations, problems; evaluations; replies.
This information includes all requests for changes to the software based on
actual errors (i.e., :he software fails to meet one of its requirements).

Proposed Changes - Reported desires for new iersions (including specific
modifications); evaluations; replies; planned upgrades. This information
includes all requests for changes to the software based on enhancements (i.e.,
the software meets its requirements, but it could do something even more useful
for the end user).

General Information - Any other information related to the software as it is in 0
operation; for example, (but not limited to) market penetration, customer
addresses and contacts, and versions and licenses.

-12-

PROCESS

Process Management - Resource management for the software project. This is the
major category that includes most of the management information pertaining to the
software development process. A good CASE tool should support most of the
information maintained and manipulated by good stand-alone project management

Schedule - Time to finish each task. This information will include both
estimates of task durations and triggering mechanisms (for those not yet
completed) as well as actual start, stop, and duration times (for those tasks
already completed). It will include any relevant dependency and status
information, as well.

Budget - This information includes estimates of salaries, personnel costs,
hardware costs, etc. (for tasks not yet completed) as well as actual salaries,
personnel costs, and hardware costs (for those tasks already completed). It will
NcXLidC any relevant dependency and status information, as well.

Personnel Assignments - This information includes responsibilities (who is
responsible for each aspect of the software development), backups (who are
available to step in for those with primary responsibilities), authorities (who has
read/write access to what project data), as well as individual data (experience, *
skills, etc.) for each member of the software development team.

Environment Customization - This information describes the environment in
which this project is being developed (including how it may differ from the
standard software devclopmc it environment in this company). What
procedures, tools, techniques, languages, management standards, coding
standards, and documentation standards are being used. How text and graphics
are f,•rmatted for various media. This information outlines how the software is
to (does) interact with the end users. Information such as standard screen
lfrmats, standard error foirmats, standard input "forms" are all included in this
information.

Format Parameters - Parameters for input to and output from the CASE
system. including reports throughout the software life cycle that keep
management informed of the progress on this software project. What reports are
to bc generated, what schedule is to be followed for them, arc they to be
manually or automatically generated, how should they look for various media.

Process Plan - What plan is to be (was) followed in developing the software.
What phases are to be employed, what standards, and overall schedule. This can
even include pre-project bidding and contracting information and some
allowance for process improvement.

At

-13-

Process Coordination - This major category includes all information needed by the
software development team for cooperation, communication, and organization.

Project Directory - Project, company, or environment scope directories. This
information includes all linkages to people, requirements, specifications, design,
code, and testing relevant to this software project. For example, in the people
category it can include all personnel working on the project, personnel with
previous experience on this or a similar project, personnel with consulting
capabilities outside the project, etc.

Configuration - Arrangement of all product and some process data. This
includes such information as (but is not limited to) software versions, revisions
(history of the software), structural relationships, and control locks (overwrite
protection).

Standards - Project consistency rules. This information includes all standards
that are to be (were) followed during software development. Note that several
other categories include some standards. In this category they are to be all
collected including documentation (perhaps the most important), personnel,
design, coding, messaging, and implementation standards.

Communication - Intra-group communication. This information includes
names, addresses, phone numbers, e-mail addresses, and office locations of all •
personnel working on the project. It can also include (but is not limited to) mail
aliases (mailing lists), note logs, meeting minutes, note/component relationships
(i.e., topical index for notes, references).

Communication Formats - Idea communication media. This includes
information on the various modes of communication among software
development team members: for example, (both in-person as well as electronic
versions of the following) forums, bulletin boards, brainstorming sessions, votes,
etc.

-14-

Process Quality Control - This major category includes all information pertaining to
quality assurance including product quality, process quality, run-time environments, and
history.

Quality Goals - Criteria to measure quality. This includes information from
requirements, specifications, and otherwise that can be used to assess the quality
of the completed software project.

Fault Consequences - What happens if the product fails. This information
describes the severity of the problems involved if the entire product or any
components thereof fail to operate according to expectations.

Target Environment - How will the product be used. The software must
operate within certain hardware and software constraints. This includes such
information as the type of operating system, LAN operation, possible abuses,
etc.

Inspections - Standards, schedules, participants, results. This includes
information about what inspections are planned (or for a completed project,
what inspections were conducted). It also includes information on classes,
design meetings, problem resolution meetings, and informal meetings.

User Input - Customer/End-user evaluations and comments. What user input is
going to be (was) collected. How is it to be used. What effect will it have on
the developing and completed software product. What input will it obtain from
experts in the field.

References - Miscellaneous, external references. This can include (but is not
limited to) references to similar projects, projects in the same application area,
projects conductcd for similar hardware systems, projects developed by the same
or similar software development teams, etc.

Project History - Record of changes and results of the process. This
information includes all aspects of project history that is not found in
Conliguration (see Process Coordination). It may include (but is not limited to)
project summaries, post-mortem analyses, process evaluations, and process
improvement suggestions.

S.. .. _ _

- = -- I ll iil I I M I I l I II I " - III I - -In - n ll i III

- 5-

The sources used in this investigation were detailed above. Since some of the
categories are broad and include subcategories, the following scale is used to show how
completely the requirement was met. Remember that the Henderson/Cooprider model
is a functional "wish list", not an implemented product.

4"
- == No support at all or not addressed by tool (equivalent to 0)
I == Possible to incorporate information, but not specifically supported
2 == Category addressed, but not fully supported
3 == Adequate
4 == Exceptional treatment of category
5 == Could not be better

Note that just because two items receive the same number for the same
category, this does not mean that they arc functionally equivalent for that category. For
example, both EPOS and Teamwork rate a 3 for the category Interfaces below. This
does not mean that EPOS and Teamwork have identical methods by which the
developer can describe software interaction with external systems - only that we
consider the Interface methods used by both EPOS and Teamwork as "Adequate".

*0

p

-16-

PRODUCT - Description

Henderson/
Category Cooprider EPOS Teamwork Excelerator DesignAid SA Tools
Functionality 3 3 4 2 2 2
Interfaces 2 3 3 4 2 2
P-rortnance 3 2 - 4 - -

"Ti me Constraints 1 3 1 3 -

Fault Tolerances 1 2 - 2 - -

Data Flow 3 3 4 3 3 3
Process Flow 3 4 3 3 3 -

Resources 1 3 - 3 -

Structure 4 3 3 3 4 1
Entity-Rclation. 2 2 3 3 3 1
Communication 3 3 3 4 3 2
Data 3 3 3 3 3 2
Req.,/)esign 3 3 - - - -

Dc,signq'crf. 3 1 - 2
1)cscrip.Ampl. 4 3 2 1 1 1
Design/Design 1 3 2 1 - -

Prototypes 2 - - 2 - -

Mean Scores 2.5 2.6 1.8 2.5 1.4 0.8
Range 1-4 0-4 0-4 0-4 0-4 0-3 * *
lnadeq. Pctage. 41% 29% 53% 41% 65% 94%

Note that the Mean Scores average the ratings for each tool (as well as the
Henderson and Cooprider report) for all categories. The Range gives an idea of the
variability of that tool (report) across all categories. The fnadeq. Pctage. line reports
the percentage of all ratings for each tool (report) that are 0, 1, or 2 (instead of 3 or 4 -
there were no 5's) and thus judged to be inadequate.

The representative CASE tools do not score particularly well in the Product
Description categories. This is somewhat surprising, since most of the stated goals of
such tools fall squarely in these categories. Notice that the functions included in
I lenderson and Cooprider's model of CASE technology score about as well as EPOS
and Excelerator.

EPOS appears to be the best of the five CASE tools we analyzed based on the
Product Description categories. Its 2.6 mean is the highest and 29% inadequacy
percentage is the lowest. Excelerator (2.5 and 41%) is comparable in performance. The
fact that none of these means reaches 3 or 4 shows that there is substantial room for
improvement.

-17-

PRODUCT - Implenentadon

Henderson/
Category Cooprider EPOS Teamwork Excelerator DesignAid SA Tools

Actual Product 3 3 1 1 1
Metrics 2 -1 1 -

Library 4 1 2 2 -

Templates 3 - 1 1 3

Compile Param. - - - --

Mean Scores 2.4 0.8 1.0 1.0 0.8 0.0
Range 0-4 0-3 0-2 0-2 0-3 0
Inadeq. Pctage. 40% 80% 100% 100% 80% 100%

Our assessment is that Henderson and Cooprider's report contains functions that
include a good deal of the useful information in the Product Implementation categories.
The representative CASE tools do not score well at all (especially in the Metrics and
Library categories). Finally, note that there is no information collection support for the
Compile Parameters category. This category constitutes information that we believe
should be part of a software development environment that appears neither in the
Henderson and Cooprider report nor in the representative CASE tools.

Not any of the five CASE tools we analyzed seems anywhere near adequate for
these categories as attested by the extremely low mean scores and very high inadequacy
percentages. ,

-18-

PRODUCT - Verification
a.

Henderson/
Category Cooprider EPOS Teamwork Excelerator DesignAid SA Tools ,

Test Plan - 3 -

I elt Tolols - -.

lcst Suites -- -

Status - - -

Errors Found 1 2 -- -

Ver./Descrip. - 2 -- -

Analysis 1 2 1 2 - -

Mean Scores 0.3 1.3 0.3 0.3 0.0 0.0
Range 0-1 0-3 0-1 0-2 0 0
lnadeq. Pctage. 100% 86% 100% 100% 100% 100%

The Product Verification categories of information are supported very poorly by
the representative CASE tools as well as by Henderson and Cooprider's report. EPOS
has adequate support for Test Plan information, but there is no support at all for such
categories as Test Tools and Test Suites. All in all, this category of software design
information is supported very poorly by existing technology.

-19-

PRODUCT - Maintenance

Henderson/
Category Cooprider EPOS Teamwork Excelerator DesignAid SA Tools
Maintenance History 2 1 1 2
Special Cases -1 1 -

Complaints 3 -

Proposed Changes 3 - -

General Information -- - -

Mean Scores 0.4 1.6 0.4 0.0 0.4 0.0
Range 0-2 0-3 0-1 0 0-2 0
Inadeq. Pctage. 100% 60% 100% 100% 100% 100%

EPOS has adequate support for the categories of Complaints and Proposed
Changes. But, by and large, the Product Maintenance categories are supported very
poorly by the representative CASE tools as well as by Henderson and Cooprider's
report.

I 0

-20-

PROCESS - Management

Henderson/
Category Cooprider EPOS Teamwork Excelerator DesignAid SA Tools
Schedule 4 4 1 --

Budget - 3 --

PcIN. Avign. 4 3 1 1 1 -

Environ. Custom. 3 2 2 - 2 2
Format Parameters 3 - - 4 3 -

Process Plan - - - -

Mean Scores 2.3 2.0 0.7 0.8 1.0 0.3
Range 0-4 0-4 0-2 0-4 0-3 0-2
lnadeq. Pctage. 33% 50% 100% 83% 83% 100% 0

The results in the Process Management categories are variable. Henderson and
Cooprider's report scores well in every category except that it has no provisions for
Budgct or Process Planning types of information. EPOS supports Schedule, Budget,
and Personnel Assignments fairly well. Both Excelerator and DesignAid support
Format Parameters at least adequately. But, only EPOS comes anywhere close to
adequacy for these categories.

I

I

-21-

PROCESS - Coordination

Henderson/
Category Cooprider EPOS Teamwork Excelerator DesignAid SA Tools
Project Direct. 3 1 3 3 3
Configuration 3 3 1 1 3
Standards 3 - - - -

Communication 3 1
Commun. Formats 3 - - - - -

Mean Scores 3.0 0.8 1.0 018 1.2 0.0
Range 3 0-3 0-3 0-3 0-3 0
Inadeq. Pctage. 0% 80% 80% 80% 60% 100%

Process Coordination is a set of categories covered quite adequately by
Henderson and Cooprider's functions because it is a focus of their report. The
representative CASE tools are also variably adequate for the Project Directory and
Configuration categories. But, the representative tools score very badly in the
Standards, Communication, and Communication Formats areas. None of these CASE
tools even approach adequacy for this set of categories.

I

-22-

PROCESS - Quality Control

Henderson/
Category Cooprider EPOS Teamwork Excelerator DesignAid SA Tools
Quality Goals 3 -- -

Fault Cfnseq. - 2 -
Target Environ. 2 -

Inspections - - -

User Input 2 1 -
References 3 - 2 1 -

Project History 1 1 - - - -

Mean Scores 1.6 0.3 0.0 0.6 0.1 0.0
Range 0-3 0-1 0 0-2 0-1 0
Inadcq. Pctage. 71% 100% 100% I00% 100% 100%

Process Quality Control is again covered better by the Henderson and Cooprider
report than by the representative CASE tools. No tool is so much as adequate in any of
these categories, and Henderson and Cooprider's report only reaches adequacy in the
Quality Goals and References categories. Fault Consequences, Inspections, and Project
History are glaring weaknesses in this category.

-23-

SUMMARY

a

The table below summarizes the mean scores from the previous 7 tables:
4"

Henderson/
Category Cooprider EPOS Teamwork Excclerator DesignAid SA Tools

Product Description 2.5 2.6 1.8 2.5 1.4 0.8

Product Implementation 2.4 0.8 1.0 1.0 0.8 0.0

Product Verification 0.3 1.3 0.3 0.3 0.0 0.0

Product Maintenance 0.4 1.6 0.4 0.0 0.4 0.0

Process Management 2.3 2.0 0.7 0.8 1.0 0.3

Process Coordination 3.0 0.8 1.0 0.8 1.2 0.0

Process Quality Control 1.6 0.3 0.0 0.6 0.1 0.0

Mean Scores 1.9 1.6 0.9 1.2 0.8 0.3 0

Note that the mean scores suggest that none of the 5 CASE tools we examined
can be considered adequate based on the categories of information we analyzed. There
is some variability among the CASE tools, but EPOS and Excelerator appear somewhat
better based on our assessment. However, the reader should not put too much stock in
these unweighted averages. More important to some readers might be to use 1--se
component scores to construct a more meaningful weighted average.

Finally, it is interesting to note that the best performance iii our assessment was
achieved by the Henderson/Cooprider report. But, this report has 1he advantage that it
is only a "wish list" of desirable components of a CASE system. The authors made no
attempt to implement such a system.

Our research to this point suggests that the current state-of-the-art in CASE
technology is not au.quate to provide the kind of software development support needed
to meet current data collection requirements for software specification, development,
and support.

- 24 -

i'eferences

II ARA89] Bararn, Giora. "Selection Criteria for Analysis and Design CASE
Tools". ACM SIGSOFT Software Engineering Notes, October 1989,
73-80.

I()OP89] C)oprider, Jay G. and John C. Henderson. "Perspectives on the
Performance Impacts of Technology on the Prototyping Process".
Center for Information Systems Research Technical Report. MIT Sloan
School of Management. 1989 (in press).

ICI[AW881 Crawford, Bard S. and Peter G. Clark. Evaluation and Validation (E&19
Referenre Manual. AFWAL/AAAF, Wright-Patterson Air Force Base,
Ohio. Version 1.1, October, 1988.

[DUNS87] Dunsmore, H. E., W. M. Zage, D. M. Zage, and G. Cabral. "A Tool for
Evaluating Software Engineering Environments". Software Engineering
Research C.;nter Technical Report TR-2-P. June, 1987.

[FISC891 Fischer, Kurt. "The Software Factory of the Future". CTContact. 2,3
May, 1989.

IGANE901 Gane, Chris. Computer-Aided Software Engineering. Prentice-Hall,
Englewood Cliffs, NJ, 1990.

[HEND88] Henderson, John C. and Jay G. Cooprider. "Dimensions of I/S Planning
and Design Technology". Center for Information Systems Research
Technical Report. MIT Sloan School of Management. September, 1988.

[HUMP871 Himphrey, Watts S. and William L Sweet. "A Method for Assessing
the Software Engineering Capability of Contractors". Software
Engineering Institute Technical Report CMU/SEI-87-TR-23. Fall, 1987.

